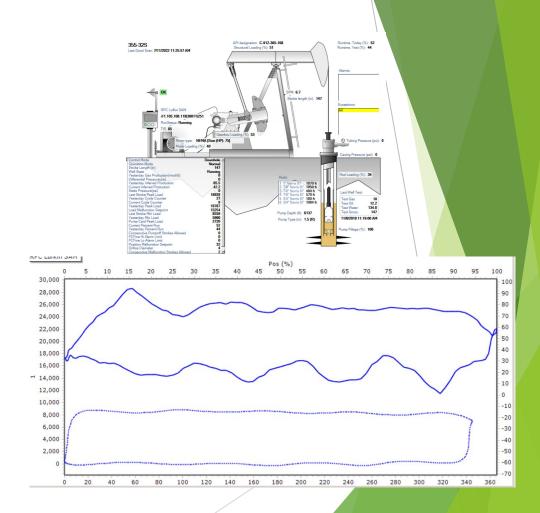


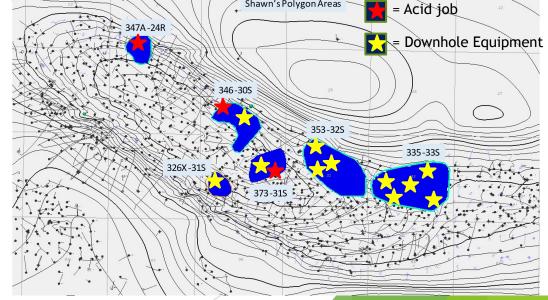
> Project Scope

- Waterflooding Optimization in the 31S Field
 - Originally tasked with reconfiguring flood patterns and looking for injection improvements
 - Overall goals changed after reviewing wells in surveillance meetings:
 - Wellbore infrastructure improvements to reduce
 - out-of-zone injection
 - Identify injection inefficiencies and optimize waterflooding within the MBB



> Project Scope

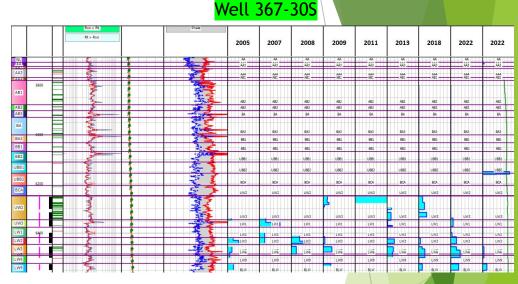
- Identify producers that are not pumped off or at max pumping capacity
 - Using XSPOC to analyze fluid levels within the well
 - Collecting fluid level shots to confirm results
 - Upgrade current equipment to lower fluid levels



Surveillance Process

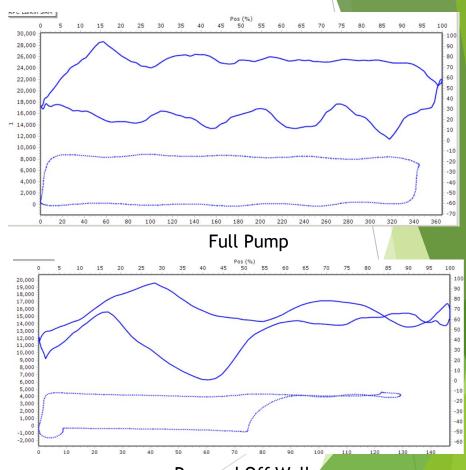
• Injector Surveillance

- Identified wells that were underinjecting based on historical averages
- Looked for the root causes during collaborative surveillance meetings
 - 14 injectors analyzed in-depth
 - 3 wells for acid jobs
 - 11 wells need downhole equipment (packers, plugs, casing, cement...)


Injector Name	Target Rate (bbl)	Current Rate (bbl)	Δ Change (bbl)
353-32S	1500	359	1141
373-32S	1000	248	752
313-5G	3600	2863	737
347/2	Shawn's F	olygonAreas = Acid	hole Equipment

Surveillance of Injectors

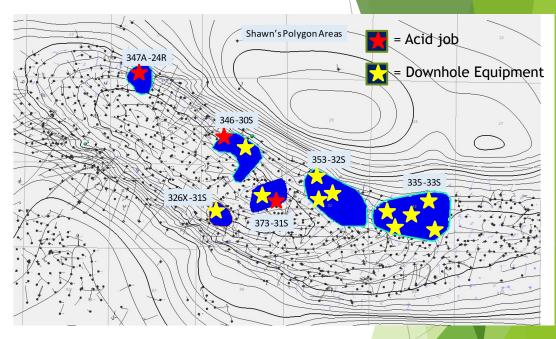
- Finding Injection Inefficiencies Through Surveillance
 - · We look at:
 - Injection surveys/Warmback surveys
 - Well configuration reports
 - Cement Bond Logs
 - Examining the problem and finding a solution
 - Skin buildup
 Coiled Tubing/ Acid Dump
 - Failed Packer Cement Squeeze Equipment Replacement
 - 78% of 14 are injecting out of zone



Surveillance of Producers

• Upsizing Opportunities

- Our well analyst group did a full field evaluation using 12 key metrics
- Identified wells that are at or near lift capacity
 - Unit upsize
 - SPM increase/stroke out
 - Downhole pump upsize
- Fixing producers allows for more collection of fluid from injectors



> Pattern Identification

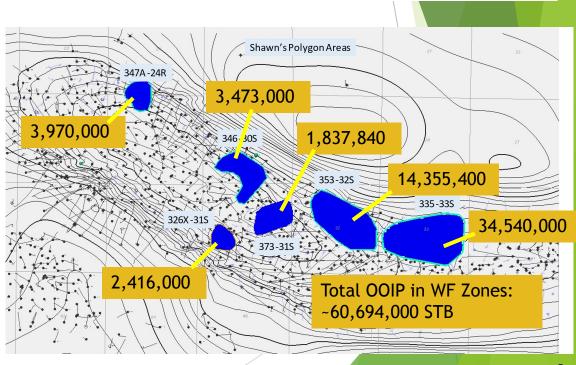
• Pattern Selection

- Mapped injectors and created a radius that reaches the closest producers perforated in the UBA, UBB, UW, LW zones
 - Filtered out any producers in NAB (only)
 - 55 Active Producers with WF perforation
 - 17 Injectors

347A-24R	326X-31S	373-315	346-30\$	353-32S	335-33S
4 Producers	3 Producers	5 Producers	10 Producers	16 Producers	17 Producers

> Volumetrics

OOIP


Geologists provided data for each zone:¹

$$OOIP(STB) = \frac{A \times h \times 7,758 \times \emptyset \times (1 - S_w)}{B_{oi}}$$

- Average Sand Thickness
- Average Permeability (K)
- Area in acres
- Water saturation²

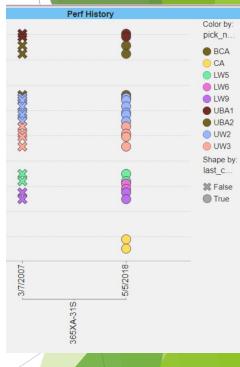
	Sand Thicknes	s Avg PHIT Sand	Avg Ka Sand (mD)
347A-24R Polyg	on		
BA	22	0.18	14
UBA	0.88	0.17	4
UBB	3.46	0.19	10
WESTERNS	146.6	0.2	12

1Assuming Two Phase Flow and Bo=1.45
2constant oil and water saturation in WF zones

> Volumetrics

- Developed a process in excel to calculate production from WF zones
 - Zonal Production using KH
 - User can select a well from the region
 - Tool will use Ka and h of each zone to allocate production rates to each zone accordingly
 - · Uses a combination of perf history data and geologic data

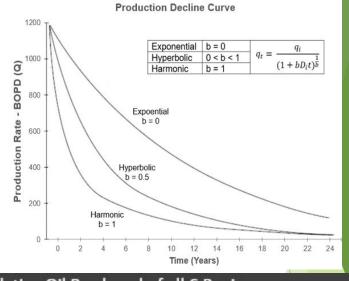
	Sand T	hickness	Avg PHIT Sand	Avg Ka Sand (mD	
347A-24R Polygo	n				
BA		22	0.18	14	
UBA	(.88	0.17	4	
UBB	3	3.46	0.19	10	
WESTERNS	1	46.6	0.2	12	
326-315		326	X-31S P	olygon	
337-31S-RD1		326	5X-31S P	olygon	
336-30S		346-30S Polygon			
327-30S 34		34	346-30S Polygon		
348-30S		34	346-30S Polygon		

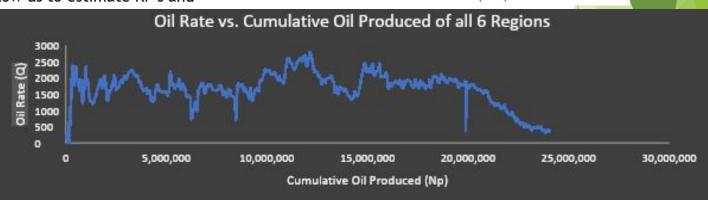


> Volumetrics

Ex. 365XA-31S

Well Selector: 384H-31S	→ mulative Producti	ion of Well			Total Oil (STB)	50740
					Summed WF P	36937
			UBA	UBB	Westerns	Non-WF Oil Pro
	Cumulative Product	ion by Zone	0	0	36936.69653	13802.95
				OIL Pro	oduction Rates (STB/D)	
	Dates Read across	Assigning	UBA	UBB	Westerns	Non-WF Oil Pro
		4	0.00	0.00	0.00	0.00
		4	0.00	0.00	18.95	7.08
		4	0.00	0.00	23.75	8.88
		4	0.00	0.00	28.79	10.76
		4	0.00	0.00	26.88	10.05
		1	0.00	0.00	40.77	15 22


Well Info:				
Polygon Grouping of Selected Well	Well name			
373-31S Polygon	384H-31S			
Open Zones:				
9/28/1952	4/28/1999	6/21/1999	2/7/2007	
NAB	0	0	0	0
UBA	NAB	NAB	NAB	
UBB		WESTERNS	WESTERNS	
WESTERNS				
0				



- Using the Excel Data to Estimate Total
 Cumulative Volumes
 - Data from excel and spotfire allow us to track cumulative volumes over time
 - Plotting volumes against $1/F_w$ and Oil Rates of all six regions allow us to estimate RF's and

total volumes

- The Process and Outcomes of Decline
 Curve Analysis
 - Able to run decline curve analysis using the data from the tool
 - Analysis and Interpretation of Water-Oil-Ratio Performance by V.V.
 Dondar, T.A. Blasingame
 - Rate vs. Cumulative Volumes
 - Assumptions:
 - "the assumption that the mobility ratio is equal to unity and that a plot of log (krw/kro) versus So is linear"
 - Pseudo-Steady Flow

Figure 1 - Fractional Flow of Water Versus Cumulative Oil Production, NRU Well 3106.

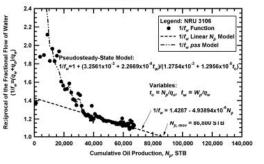


Figure 2 - Reciprocal of Fractional Flow of Water Versus Cumulative Oil Production, NRU Well 3106.

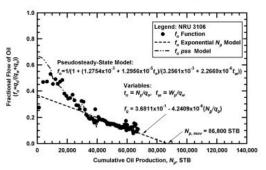
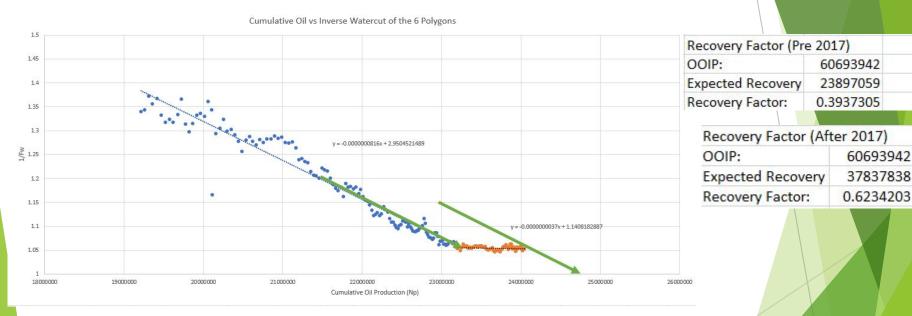
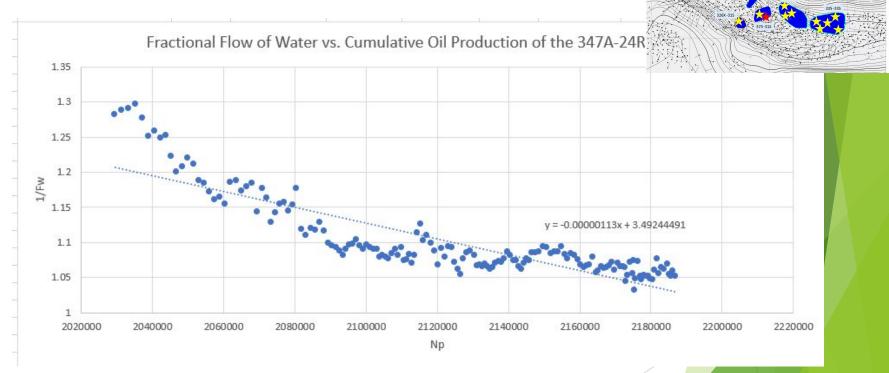
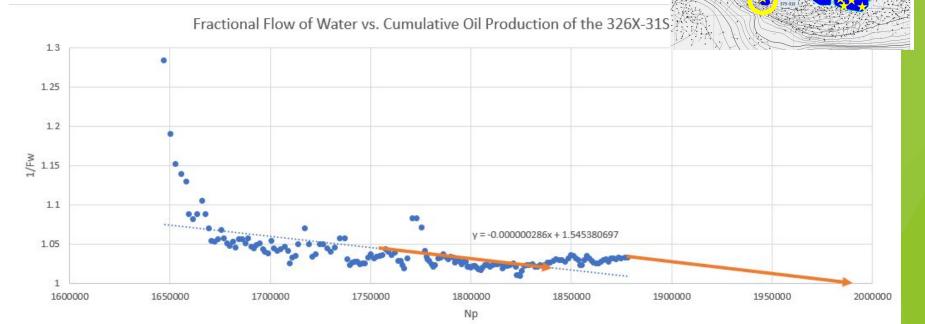



Figure 3 – Fractional Flow of Oil Versus Cumulative Oil Production, NRU Well 3106.


Plot of Fraction Flow of Water vs. Cumulative Oil Production of the 6 Regions

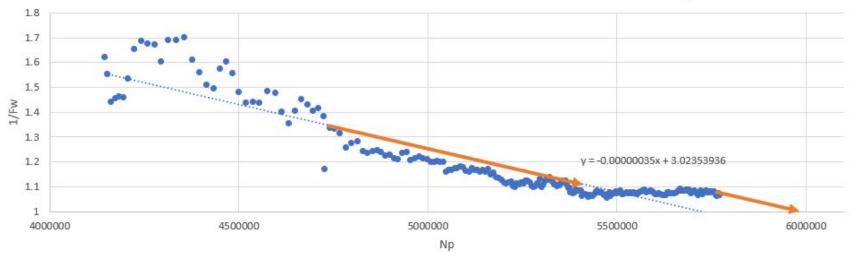
- Trendline change in 2017 from .39 RF to .62 RF
- Trendline Pre-2017 was used for volumetric calculations
- Trendline stops at 1/Fw=1.005
 - 99.5% watercut


Region 347A-24R

= Downhole Equipment

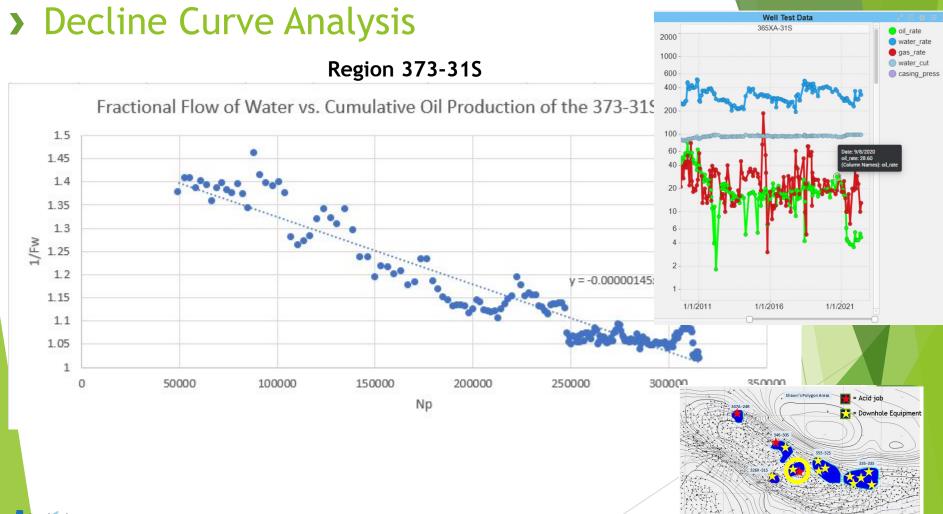
Region 326X-31S

- Trend changed on 1/31/2019
- Reasons for increase after 2019 is being explored



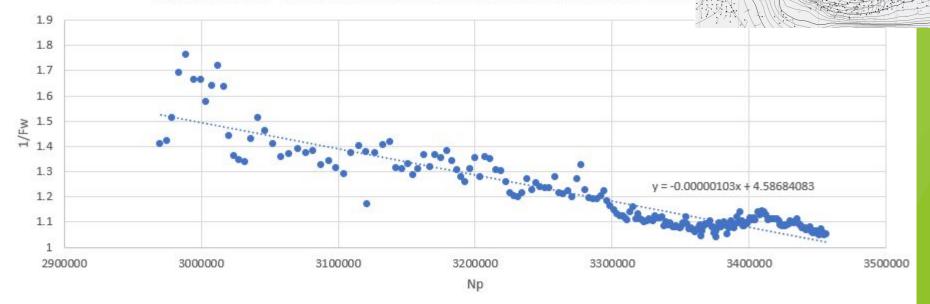
= Downhole Equipment

Region 353-32S

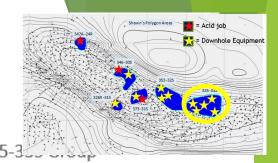


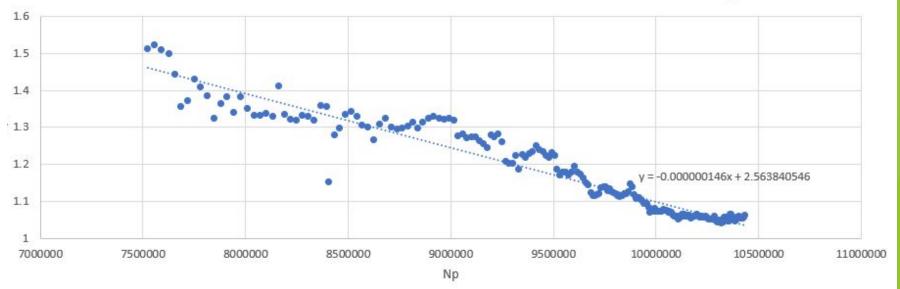
Fractional Flow of Water vs. Cumulative Oil Production of the 353-32S

- Trend changed at 9/30/2015
- Most likely caused by carrying water cuts



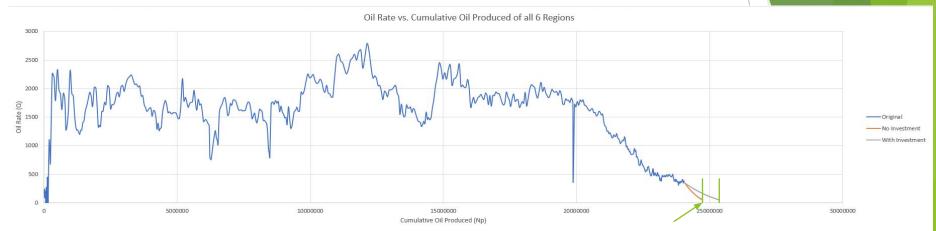
Region 346-30S


Fractional Flow of Water vs. Cumulative Oil Production of the 346-36



= Downhole Equipment

Region 335-33S



Fractional Flow of Water vs. Cumulative Oil Production of the 335-3

• Outcomes of Investment for the 6 Regions

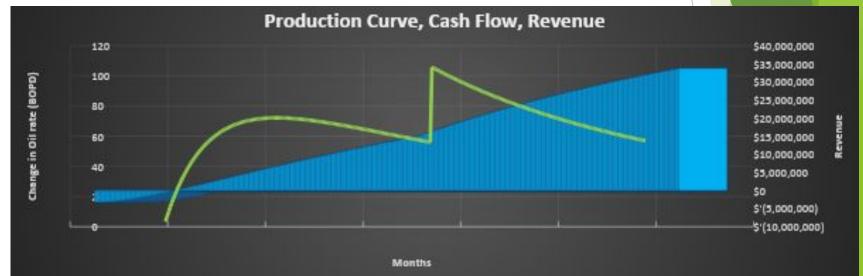
- Hyperbolic curve was fitted to find yearly decline rate of 24%
- Fixing Injection problems can decrease yearly decline to 12% (based on 31S field decline)
- Δ Cumulative Oil = 622108

Δ Cumulative Oil

Costs

Costs Analysis

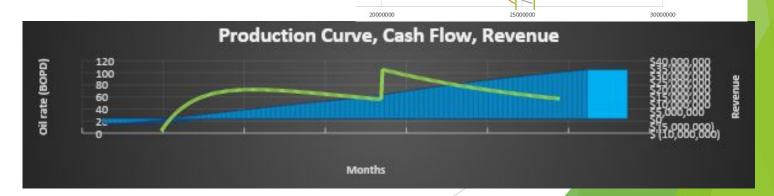
- Costs based on historical job estimates in the 31S field
- Estimates may differ due to supply side constraints and inflation
- Cost to fix the 14 injectors and 4 producers in the 6 regions is \$3,275,000


Group 347A-24	IR .			
Well name Well Type	Job Type	Avg Cost,\$M	Count	Total M
347A-24 Injector	CT acid job	25	1	\$25
189	(b)		Group Total:	\$25
Group 326X-31	S			
Well name Well Type	Job Type	Avg Cost,\$M	Count	Total M
326X-31 Injector	clean out, PU at 6320ft, Dual p	450	1	\$450
326-31S Produce		150	1	\$150
325X-31 Produce	Consider pull tubing and upsiz	130	1	\$130
335-31S Produce	Consider rotoflex	130	1	\$130
			Group Total:	\$860
Group 373-319				
Well name Well Type	Job Type	Avg Cost,\$M	Count	Total M
373-31S Injector	Cement from 5520-5550ft, Ou		1	\$413
383X-31 Injector	ct Acid job	25	1	\$25
	7/2		Group Total:	\$438
Group 346-309	<u> </u>			
Well name Well Type		Avg Cost,\$M	Count	Total M
346-305 Injector	Acid dump (acid impact uncle		1	\$6
367-305 Injector	Wellbore cleanout and cemen		1	\$413
			Group Total:	\$419
Group 353-339	<u> </u>			
Well name Well Type	Job Type	Avg Cost,\$M	Count	Total M
353-329 Injector	Add perfs 6460-6470ft, Ceme	437	- 1	\$437
373-329 Injector	Clean out, PU at 6465ft	25	1	\$25
375-325 Injector	Bridge Plug Replacement	50	1	\$50
•			Group Total:	\$512
Group 335-339	20000000			
Well nameWell Type	Job Type	Avg Cost,\$M	Count	Total M
335-335 Injector	Packer from 6610-6740ft. Isola	296	1	\$296
355-335 Injector	CO, Dual Packer 6650ft-6785	296	1	\$296
363X-33 Injector	Cement from 7280-7315ft	413	1	\$413
366-335 Injector	Dual packer isolating 6717ft-6	15	1	\$15
327XA-3 Injector	Up injection rate to 10k stb/d	0	- 1	\$0
356X-33 Produce	SPMine	1.5	1	\$2
			Group Total:	\$1,022

			Absolute total	\$3,275

> Economics

- Breakeven point @ 44 months based on:
 - \$65/bbl after lift costs
 - 25-year project lifespan
- Total Profit after 25 years is \$37,162,020


Summary

- Extensively analyzed ~14 injectors to perform work on
 - 3 wells for acid jobs
 - 11 wells that need downhole equipment (packers, plugs, casing, cement...)
- Total Profit after 25 years is \$37,162,020 if work is executed
 - Breakeven point is 44 months
- Created algorithms in excel to calculate oil rates and volumes from WF zones

Recovery Factor wit	no investmen
OOIP	60693941
Expected Recovery	2463799
Recovery Factor:	0.4
Recovery Factor if w	ork is complet
OOIP	60693941.75
Expected Recovery	25343796.67
Recovery Factor:	0.42

~622,000

barrels gained

